{ "id": "1805.06551", "version": "v1", "published": "2018-05-16T23:02:22.000Z", "updated": "2018-05-16T23:02:22.000Z", "title": "Ground state of a magnetic nonlinear Choquard equation", "authors": [ "Hamilton Bueno", "Guido G. Mamani", "Gilberto A. Pereira" ], "comment": "11 pages", "categories": [ "math.AP" ], "abstract": "We consider the stationary magnetic nonlinear Choquard equation \\[-(\\nabla+iA(x))^2u+ V(x)u=\\bigg(\\frac{1}{|x|^{\\alpha}}*F(|u|)\\bigg)\\frac{f(|u|)}{|u|}{u},\\] where $A: \\mathbb{R}^{N}\\rightarrow \\mathbb{R}^{N}$ is a vector potential, $V$ is a scalar potential, $f\\colon\\mathbb{R}\\to\\mathbb{R}$ and $F$ is the primitive of $f$. Under mild hypotheses, we prove the existence of a ground state solution for this problem. We also prove a simple multiplicity result by applying Ljusternik-Schnirelmann methods.", "revisions": [ { "version": "v1", "updated": "2018-05-16T23:02:22.000Z" } ], "analyses": { "subjects": [ "35Q55", "35Q40", "35J20" ], "keywords": [ "stationary magnetic nonlinear choquard equation", "ground state solution", "simple multiplicity result", "scalar potential", "mild hypotheses" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }