{ "id": "1805.06246", "version": "v1", "published": "2018-05-16T11:23:15.000Z", "updated": "2018-05-16T11:23:15.000Z", "title": "Uniqueness of solution to scalar BSDEs with $L\\exp{\\left(μ \\sqrt{2\\log{(1+L)}}\\,\\right)}$-integrable terminal values", "authors": [ "Rainer Buckdahn", "Ying Hu", "Shanjian Tang" ], "categories": [ "math.PR" ], "abstract": "In [4], the existence of the solution is proved for a scalar linearly growing backward stochastic differential equation (BSDE) if the terminal value is $L\\exp{\\left(\\mu \\sqrt{2\\log{(1+L)}}\\,\\right)}$-integrable with the positive parameter $\\mu$ being bigger than a critical value $\\mu\\_0$. In this note, we give the uniqueness result for the preceding BSDE.", "revisions": [ { "version": "v1", "updated": "2018-05-16T11:23:15.000Z" } ], "analyses": { "keywords": [ "integrable terminal values", "scalar bsdes", "uniqueness", "growing backward stochastic differential equation", "scalar linearly growing backward stochastic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }