{ "id": "1805.05136", "version": "v1", "published": "2018-05-14T12:13:28.000Z", "updated": "2018-05-14T12:13:28.000Z", "title": "Regularizing effect for some p-Laplacian systems", "authors": [ "Riccardo Durastanti" ], "categories": [ "math.AP" ], "abstract": "We study existence and regularity of weak solutions for the following $p$-Laplacian system \\begin{cases} -\\Delta_p u+A\\varphi^{\\theta+1}|u|^{r-2}u=f, \\ &u\\in W_0^{1,p}(\\Omega),\\\\-\\Delta_p \\varphi=|u|^r\\varphi^\\theta, \\ &\\varphi\\in W_0^{1,p}(\\Omega), \\end{cases} where $\\Omega$ is an open bounded subset of $\\mathbb{R}^N$ $(N\\geq 2)$, $\\Delta_p v :=\\operatorname{div}(|\\nabla v|^{p-2}\\nabla v)$ is the $p$-Laplacian operator, for $1
0$, $r>1$, $0\\leq\\theta