{ "id": "1805.04719", "version": "v1", "published": "2018-05-12T13:23:04.000Z", "updated": "2018-05-12T13:23:04.000Z", "title": "Lie Groups with flat Gauduchon connections", "authors": [ "Luigi Vezzoni", "Bo Yang", "Fangyang Zheng" ], "comment": "8 pages", "categories": [ "math.DG" ], "abstract": "In \\cite{YZ-Gflat} it is considered the question of classifying compact Hermitian manifolds with flat $s$-Gauduchon connection, which is $\\nabla^s =(1-\\frac{s}{2})\\nabla^c + \\frac{s}{2}\\nabla^b$, where $\\nabla^c$ and $\\nabla^b$ are the Chern and Bismut connections respectively. In this note, we consider even-dimensional connected Lie group $G$ equipped with a left invariant metric $g$ and a compatible left invariant complex structure $J$. We show that when $s\\neq 0, 2$ and when there is a left invariant $\\nabla^s$-parallel frame, the manifold must be the flat K\\\"ahler space.", "revisions": [ { "version": "v1", "updated": "2018-05-12T13:23:04.000Z" } ], "analyses": { "keywords": [ "flat gauduchon connections", "compatible left invariant complex structure", "classifying compact hermitian manifolds", "left invariant metric", "even-dimensional connected lie group" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }