{ "id": "1805.04488", "version": "v1", "published": "2018-05-11T16:50:04.000Z", "updated": "2018-05-11T16:50:04.000Z", "title": "Standard Triples for Algebraic Linearizations of Matrix Polynomials", "authors": [ "Eunice Y. S. Chan", "Robert M. Corless", "Leili Rafiee Sevyeri" ], "comment": "17 pages", "categories": [ "math.NA" ], "abstract": "Standard triples $\\mathbf{X}$, $\\mathbf{C}_{1} - \\mathbf{C}_{0}$, $\\mathbf{Y}$ of nonsingular matrix polynomials $\\mathbf{P}(z) \\in \\mathbb{C}^{r \\times r}$ have the property $\\mathbf{X}(z \\mathbf{C}_{1}~-~\\mathbf{C}_{0})^{-1}\\mathbf{Y}~=~\\mathbf{P}^{-1}(z)$ for $z \\notin \\Lambda(\\mathbf{P}(z))$. They can be used in constructing algebraic linearizations; for example, for $\\mathbf{h}(z) = z \\mathbf{a}(z)\\mathbf{b}(z) + c \\in \\mathbb{C}^{r \\times r}$ from linearizations for $\\mathbf{a}(z)$ and $\\mathbf{b}(z)$. We tabulate standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the possibility of a transposed linearization, a flipped linearization, and a transposed-and-flipped linearization. We give proofs for the less familiar bases.", "revisions": [ { "version": "v1", "updated": "2018-05-11T16:50:04.000Z" } ], "analyses": { "subjects": [ "65F15", "15A22", "65D05" ], "keywords": [ "orthogonal polynomial bases", "nonsingular matrix polynomials", "hermite interpolational bases", "newton interpolational bases", "tabulate standard triples" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }