{ "id": "1805.03845", "version": "v1", "published": "2018-05-10T06:44:13.000Z", "updated": "2018-05-10T06:44:13.000Z", "title": "A Liouville type theorem for axially symmetric $D$-solutions to steady Navier-Stokes Equations", "authors": [ "Na Zhao" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "We study axially symmetric $D$-solutions of three dimensional steady Navier-Stokes equations. We prove that if the velocity $u$ decays like $|x'|^{-(\\frac{2}{3})^+}$ uniformly for $z$, or the vorticity $\\omega$ decays like $|x'|^{-(\\frac{5}{3})^+}$ uniformly for $z$, then $u$ vanishes. Here $|x'|$ denotes the distance to the axis.", "revisions": [ { "version": "v1", "updated": "2018-05-10T06:44:13.000Z" } ], "analyses": { "keywords": [ "liouville type theorem", "dimensional steady navier-stokes equations", "study axially symmetric" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }