{ "id": "1805.03277", "version": "v1", "published": "2018-05-08T20:47:43.000Z", "updated": "2018-05-08T20:47:43.000Z", "title": "Rank-one perturbations of quasinilpotent operators and the invariant subspace problem", "authors": [ "Adi Tcaciuc" ], "categories": [ "math.FA" ], "abstract": "We show that a bounded quasinilpotent operator $T$ acting on an infinite dimensional Banach space has an invariant subspace if and only if there exists a rank one operator $F$ and a scalar $\\alpha\\in\\mathbb{C}$, $\\alpha\\neq 0$, $\\alpha\\neq 1$, such that $T+F$ and $T+\\alpha F$ are also quasinilpotent. We also prove that for any fixed rank-one operator $F$, almost all perturbations $T+\\alpha F$ have invariant subspaces of infinite dimension and codimension.", "revisions": [ { "version": "v1", "updated": "2018-05-08T20:47:43.000Z" } ], "analyses": { "subjects": [ "47A15", "47A55" ], "keywords": [ "invariant subspace problem", "rank-one perturbations", "infinite dimensional banach space", "bounded quasinilpotent operator", "fixed rank-one operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }