{ "id": "1805.02071", "version": "v1", "published": "2018-05-05T15:42:09.000Z", "updated": "2018-05-05T15:42:09.000Z", "title": "Central Values of $GL(2)\\times GL(3)$ Rankin-Selberg $L$-functions with Applications", "authors": [ "Qinghua Pi" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "Let $f$ be a normalized holomorphic cusp form for $SL_2(\\mathbb{Z})$ of weight $k$ with $k\\equiv0\\bmod 4$. By the Kuznetsov trace formula for $GL_3(\\mathbb R)$, we obtain the first moment of central values of $L(s,f\\otimes \\phi)$, where $\\phi$ varies over Hecke-Maass cusp forms for $SL_3(\\mathbb Z)$. As an application, we obtain a non-vanishing result for $L(1/2,f\\otimes\\phi)$ and show that such $f$ is determined by $\\{L(1/2,f\\otimes\\phi)\\}$ as $\\phi$ varies.", "revisions": [ { "version": "v1", "updated": "2018-05-05T15:42:09.000Z" } ], "analyses": { "subjects": [ "11F11", "11F67" ], "keywords": [ "central values", "application", "rankin-selberg", "normalized holomorphic cusp form", "kuznetsov trace formula" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }