{ "id": "1805.02057", "version": "v1", "published": "2018-05-05T13:54:21.000Z", "updated": "2018-05-05T13:54:21.000Z", "title": "Abelian ideals of a Borel subalgebra and root systems, II", "authors": [ "Dmitri I. Panyushev" ], "comment": "12 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "Let $\\mathfrak g$ be a simple Lie algebra with a Borel subalgebra $\\mathfrak b$ and $\\mathfrak{Ab}$ the set of abelian ideals of $\\mathfrak b$. Let $\\Delta^+$ be the corresponding set of positive roots. We continue our study of combinatorial properties of the partition of $\\mathfrak{Ab}$ parameterised by the long positive roots. In particular, the union of an arbitrary set of maximal abelian ideals is described, if $\\mathfrak g\\ne\\mathfrak{sl}_n$. We also characterise the greatest lower bound of two positive roots, when it exists, and point out interesting subposets of $\\Delta^+$ that are modular lattices.", "revisions": [ { "version": "v1", "updated": "2018-05-05T13:54:21.000Z" } ], "analyses": { "subjects": [ "17B20", "17B22", "06A07", "20F55" ], "keywords": [ "borel subalgebra", "root systems", "maximal abelian ideals", "greatest lower bound", "simple lie algebra" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }