{ "id": "1805.01999", "version": "v1", "published": "2018-05-05T04:59:32.000Z", "updated": "2018-05-05T04:59:32.000Z", "title": "Inequalities for the $q$-gamma and related functions", "authors": [ "Mohamed El Bachraoui", "József Sándor" ], "comment": "Submitted 4 May 2018, pages 16", "categories": [ "math.NT" ], "abstract": "We consider convexity and monotonicity properties for some functions related to the $q$-gamma function. As applications, we give a variety of inequalities for the $q$-gamma function, the $q$-digamma function $\\psi_q(x)$, and the $q$-series. Among other consequences, we improve a result of Azler~and~Grinshpan about the zeros of the function $\\psi_q(x)$. We use $q$-analogues for the Gauss multiplication formula to put in closed form members of some of our inequalities.", "revisions": [ { "version": "v1", "updated": "2018-05-05T04:59:32.000Z" } ], "analyses": { "subjects": [ "33B15", "26D15", "33E05" ], "keywords": [ "related functions", "inequalities", "gauss multiplication formula", "digamma function", "monotonicity properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }