{ "id": "1805.01911", "version": "v1", "published": "2018-05-04T18:34:37.000Z", "updated": "2018-05-04T18:34:37.000Z", "title": "Infinite time blow-up for the fractional heat equation with critical exponent", "authors": [ "Y. Sire", "J. Wei", "Z. Zheng", "Y. Zhou" ], "categories": [ "math.AP" ], "abstract": "We consider positive solutions for the fractional heat equation with critical exponent \\begin{equation*} \\begin{cases} u_t = -(-\\Delta)^{s}u + u^{\\frac{n+2s}{n-2s}}\\text{ in } \\Omega\\times (0, \\infty), u = 0\\text{ on } (\\mathbb{R}^n\\setminus \\Omega)\\times (0, \\infty), u(\\cdot, 0) = u_0\\text{ in }\\mathbb{R}^n, \\end{cases} \\end{equation*} where $\\Omega$ is a smooth bounded domain in $\\mathbb{R}^n$, $n > 4s$, $s\\in (0, 1)$, $u:\\mathbb{R}^n\\times [0, \\infty)\\to \\mathbb{R}$ and $u_0$ is a positive smooth initial datum with $u_0|_{\\mathbb{R}^n\\setminus \\Omega} = 0$. We prove the existence of $u_0$ such that the solution blows up precisely at prescribed distinct points $q_1,\\cdots, q_k$ in $\\Omega$ as $t\\to +\\infty$. The main ingredient of the proofs is a new inner-outer gluing scheme for the fractional parabolic problems.", "revisions": [ { "version": "v1", "updated": "2018-05-04T18:34:37.000Z" } ], "analyses": { "keywords": [ "fractional heat equation", "infinite time blow-up", "critical exponent", "positive smooth initial datum", "fractional parabolic problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }