{ "id": "1805.00992", "version": "v1", "published": "2018-05-02T19:32:26.000Z", "updated": "2018-05-02T19:32:26.000Z", "title": "Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings", "authors": [ "Alejandro Morales", "Igor Pak", "Martin Tassy" ], "categories": [ "math.CO" ], "abstract": "We prove and generalize a conjecture in arXiv:1610.0474(4) about the asymptotics of $\\frac{1}{\\sqrt{n!}} f^{\\lambda/\\mu}$, where $f^{\\lambda/\\mu}$ is the number of standard Young tableaux of skew shape $\\lambda/\\mu$ which have stable limit shape under the $1/\\sqrt{n}$ scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.", "revisions": [ { "version": "v1", "updated": "2018-05-02T19:32:26.000Z" } ], "analyses": { "keywords": [ "weighted lozenge tilings", "skew shape", "standard tableaux", "asymptotics", "standard young tableaux" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }