{ "id": "1805.00880", "version": "v1", "published": "2018-05-02T15:54:30.000Z", "updated": "2018-05-02T15:54:30.000Z", "title": "Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces", "authors": [ "Augusto Gerolin", "Anna Kausamo", "Tapio Rajala" ], "comment": "18 pages", "categories": [ "math.AP", "math-ph", "math.MP", "math.OC" ], "abstract": "In this paper we extend the duality theory of the multi-marginal optimal transport problem for cost functions depending on a decreasing function of the distance (not necessarily bounded). This class of cost functions appears in the context of SCE Density Functional Theory introduced in \"Strong-interaction limit of density-functional theory\" by M. Seidl.", "revisions": [ { "version": "v1", "updated": "2018-05-02T15:54:30.000Z" } ], "analyses": { "keywords": [ "duality theory", "metric spaces", "repulsive costs", "multi-marginal optimal transport problem", "sce density functional theory" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }