{ "id": "1805.00301", "version": "v1", "published": "2018-05-01T12:58:36.000Z", "updated": "2018-05-01T12:58:36.000Z", "title": "A note on the number of cyclic subgroups of a finite group", "authors": [ "Marius Tărnăuceanu", "Mihai-Silviu Lazorec" ], "comment": "13 pages", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group, $L_1(G)$ be its poset of cyclic subgroups and consider the quantity $\\alpha(G)=\\frac{|L_1(G)|}{|G|}$. The aim of this paper is to study the class $\\cal{C}$ of finite nilpotent groups having $\\alpha(G)=\\frac{3}{4}$. We show that if $G$ belongs to this class, then it is a 2-group satisfying certain conditions. Also, we study the appartenance of some classes of finite groups to $\\cal{C}$.", "revisions": [ { "version": "v1", "updated": "2018-05-01T12:58:36.000Z" } ], "analyses": { "keywords": [ "finite group", "cyclic subgroups", "finite nilpotent groups", "appartenance", "conditions" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }