{ "id": "1804.11345", "version": "v1", "published": "2018-04-30T17:50:39.000Z", "updated": "2018-04-30T17:50:39.000Z", "title": "Linear maps on graphs preserving a given independence number", "authors": [ "Yanan Hu", "Zejun Huang" ], "categories": [ "math.CO" ], "abstract": "Denote by $\\mathscr{G}_n$ the set of simple graphs with vertex set $\\{1,2,\\ldots,n\\}$. A complete linear map $\\phi: \\mathscr{G}_n \\rightarrow\\mathscr{G}_n$ is a map satisfying $\\phi(K_n)=K_n$ and $$\\phi(G_1\\cup G_2)=\\phi(G_1)\\cup \\phi(G_2)~~~~{\\rm for ~all~}G_1,G_2\\in \\mathscr{G}_n.$$ Given positive integers $n$ and $t$ such that $t\\le n-1$, we prove that a complete linear map $\\phi: \\mathscr{G}_n\\rightarrow \\mathscr{G}_n$ satisfies $$\\alpha(\\phi(G))=t~\\iff \\alpha(G)=t {~~~~\\rm for~ all~}G\\in \\mathscr{G}_n$$ iff $\\phi$ is an edge permutation when $t=1$ and $\\phi$ is a vertex permutation when $t\\ge 2$, where $\\alpha(G)$ is the independence number of a graph $G$.", "revisions": [ { "version": "v1", "updated": "2018-04-30T17:50:39.000Z" } ], "analyses": { "keywords": [ "independence number", "complete linear map", "graphs preserving", "vertex set", "vertex permutation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }