{ "id": "1804.10706", "version": "v1", "published": "2018-04-27T22:41:47.000Z", "updated": "2018-04-27T22:41:47.000Z", "title": "Weakly Einstein critical metrics of the volume functional on compact manifolds with boundary", "authors": [ "H. Baltazar", "A. Da Silva", "F. Oliveira" ], "comment": "10 pages", "categories": [ "math.DG" ], "abstract": "The goal of this paper is to study weakly Einstein critical metrics of the volume functional on a compact manifold $M$ with smooth boundary $\\partial M$. Here, we prove that an $n$-dimensional, $n=3$ or $4,$ weakly Einstein critical metric of the volume functional with nonnegative scalar curvature must be isometric to a geodesic ball in a simply connected space form $\\mathbb{R}^{n}$ or $\\mathbb{S}^{n}$. Moreover, in the higher dimensional case ($n\\geq5$), we will established a similar result for weakly Einstein critical metric under a suitable constraint on the Weyl tensor.", "revisions": [ { "version": "v1", "updated": "2018-04-27T22:41:47.000Z" } ], "analyses": { "keywords": [ "volume functional", "compact manifold", "study weakly einstein critical metrics", "higher dimensional case", "geodesic ball" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }