{ "id": "1804.10693", "version": "v1", "published": "2018-04-27T21:28:04.000Z", "updated": "2018-04-27T21:28:04.000Z", "title": "Weak products of complete Pick spaces", "authors": [ "Alexandru Aleman", "Michael Hartz", "John E. McCarthy", "Stefan Richter" ], "categories": [ "math.FA" ], "abstract": "Let $\\mathcal H$ be the Drury-Arveson or Dirichlet space of the unit ball of $\\mathbb C^d$. The weak product $\\mathcal H\\odot\\mathcal H$ of $\\mathcal H$ is the collection of all functions $h$ that can be written as $h=\\sum_{n=1}^\\infty f_n g_n$, where $\\sum_{n=1}^\\infty \\|f_n\\|\\|g_n\\|<\\infty$. We show that $\\mathcal H\\odot\\mathcal H$ is contained in the Smirnov class of $\\mathcal H$, i.e. every function in $\\mathcal H\\odot\\mathcal H$ is a quotient of two multipliers of $\\mathcal H$, where the function in the denominator can be chosen to be cyclic in $\\mathcal H$. As a consequence we show that the map $\\mathcal N \\to clos_{\\mathcal H\\odot\\mathcal H} \\mathcal N$ establishes a 1-1 and onto correspondence between the multiplier invariant subspaces of $\\mathcal H$ and of $\\mathcal H\\odot\\mathcal H$. The results hold for many weighted Besov spaces $\\mathcal H$ in the unit ball of $\\mathbb C^d$ provided the reproducing kernel has the complete Pick property. One of our main technical lemmas states that for weighted Besov spaces $\\mathcal H$ that satisfy what we call the multiplier inclusion condition any bounded column multiplication operator $\\mathcal H \\to \\oplus_{n=1}^\\infty \\mathcal H$ induces a bounded row multiplication operator $\\oplus_{n=1}^\\infty \\mathcal H \\to \\mathcal H$. For the Drury-Arveson space $H^2_d$ this leads to an alternate proof of the characterization of interpolating sequences in terms of weak separation and Carleson measure conditions.", "revisions": [ { "version": "v1", "updated": "2018-04-27T21:28:04.000Z" } ], "analyses": { "keywords": [ "complete pick spaces", "weak product", "weighted besov spaces", "unit ball", "carleson measure conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }