{ "id": "1804.09609", "version": "v1", "published": "2018-04-25T14:52:09.000Z", "updated": "2018-04-25T14:52:09.000Z", "title": "Groups whose word problems are not semilinear", "authors": [ "Robert H. Gilman", "Robert P. Kropholler", "Saul Schleimer" ], "categories": [ "math.GR" ], "abstract": "Suppose that G is a finitely generated group and W is the formal language of words defining the identity in G. We prove that if G is a nilpotent group, the fundamental group of a finite volume hyperbolic three-manifold, or a right-angled Artin group whose graph lies in a certain infinite class, then W is not a multiple context free language.", "revisions": [ { "version": "v1", "updated": "2018-04-25T14:52:09.000Z" } ], "analyses": { "subjects": [ "20F10" ], "keywords": [ "word problems", "semilinear", "multiple context free language", "finite volume hyperbolic three-manifold", "fundamental group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }