{ "id": "1804.09519", "version": "v1", "published": "2018-04-25T12:36:24.000Z", "updated": "2018-04-25T12:36:24.000Z", "title": "Sutured manifolds and $L^2$-Betti numbers", "authors": [ "Gerrit Herrmann" ], "categories": [ "math.GT" ], "abstract": "Using the virtual fibering theorem of Agol we show that a sutured 3-manifold $(M, R_+,R_-,\\gamma)$ is taut if and only if the $\\ell^2$-Betti numbers of the pair $(M,R_-)$ are zero. As an application we can characterize Thurston norm minimizing surfaces in a 3-manifold $N$ with empty or toroidal boundary by the vanishing of certain $\\ell^2$-Betti numbers.", "revisions": [ { "version": "v1", "updated": "2018-04-25T12:36:24.000Z" } ], "analyses": { "subjects": [ "57M27" ], "keywords": [ "betti numbers", "sutured manifolds", "characterize thurston norm minimizing surfaces", "virtual fibering theorem", "toroidal boundary" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }