{ "id": "1804.09451", "version": "v1", "published": "2018-04-25T09:42:52.000Z", "updated": "2018-04-25T09:42:52.000Z", "title": "Provability Logic and the Completeness Principle", "authors": [ "Albert Visser", "Jetze Zoethout" ], "categories": [ "math.LO" ], "abstract": "In this paper, we study the provability logic of intuitionistic theories of arithmetic that prove their own completeness. We prove a completeness theorem for theories equipped with two provability predicates $\\Box$ and $\\triangle$ that prove the schemes $A\\to\\triangle A$ and $\\Box\\triangle S\\to\\Box S$ for $S\\in\\Sigma_1$. Using this theorem, we determine the logic of fast provability for a number of intuitionistic theories. Furthermore, we reprove a theorem previously obtained by M. Ardeshir and S. Mojtaba Mojtahedi determining the $\\Sigma_1$-provability logic of Heyting Arithmetic.", "revisions": [ { "version": "v1", "updated": "2018-04-25T09:42:52.000Z" } ], "analyses": { "subjects": [ "03F45", "03F50", "03F55" ], "keywords": [ "provability logic", "completeness principle", "intuitionistic theories", "provability predicates", "mojtaba mojtahedi" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }