{ "id": "1804.09261", "version": "v1", "published": "2018-04-24T21:20:30.000Z", "updated": "2018-04-24T21:20:30.000Z", "title": "Gluing metrics with prescribed $Q$-curvature and different asymptotic behaviour in dimension $6$", "authors": [ "Ali Hyder", "Luca Martinazzi" ], "categories": [ "math.AP" ], "abstract": "We show a new example of blow-up behaviour for the prescribed $Q$-curvature equation in dimension $6$, namely given a sequence $(V_k)\\subset C^0(\\mathbb{R}^6)$ suitably converging we construct a sequence $(u_k)$ of radially symmetric solutions to the equation $$(-\\Delta)^3 u_k=V_k e^{6 u_k} \\quad \\text{in }\\mathbb{R}^6,$$ with $u_k$ blowing up at the origin and on a sphere. We also prove sharp blow-up estimates.", "revisions": [ { "version": "v1", "updated": "2018-04-24T21:20:30.000Z" } ], "analyses": { "keywords": [ "asymptotic behaviour", "gluing metrics", "sharp blow-up estimates", "blow-up behaviour", "curvature equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }