{ "id": "1804.09103", "version": "v1", "published": "2018-04-24T15:41:30.000Z", "updated": "2018-04-24T15:41:30.000Z", "title": "On the reflection of the countable chain condition", "authors": [ "Ramiro de la Vega" ], "comment": "7 pages", "categories": [ "math.GN" ], "abstract": "We study the question of when an uncountable ccc topological space $X$ contains a ccc subspace of size $\\aleph_1$. We show that it does if $X$ is compact Hausdorff and more generally if $X$ is Hausdorff with $\\mathrm{pct}(X) \\leq \\aleph_1$. For each regular cardinal $\\kappa$, an example is constructed of a ccc Tychonoff space of size $\\kappa$ and countable pseudocharacter but with no ccc subspace of size less than $\\kappa$. We also give a ccc compact $T_1$ space of size $\\kappa$ with no ccc subspace of size less than $\\kappa$.", "revisions": [ { "version": "v1", "updated": "2018-04-24T15:41:30.000Z" } ], "analyses": { "subjects": [ "54A25", "54G20", "54D30", "54A10" ], "keywords": [ "countable chain condition", "ccc subspace", "reflection", "ccc tychonoff space", "compact hausdorff" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }