{ "id": "1804.08152", "version": "v1", "published": "2018-04-22T18:32:39.000Z", "updated": "2018-04-22T18:32:39.000Z", "title": "Torsion-Free Abelian Groups are Consistently $a Δ^1_2$-complete", "authors": [ "Saharon Shelah", "Douglas Ulrich" ], "comment": "21 pages", "categories": [ "math.LO" ], "abstract": "Let $\\mbox{TFAG}$ be the theory of torsion-free abelian groups. We show that if there is no countable transitive model of $ZFC^- + \\kappa(\\omega)$ exists, then $\\mbox{TFAG}$ is $a \\Delta^1_2$-complete; in particular, this is consistent with $ZFC$. We define the $\\alpha$-ary Schr\\\"{o}der- Bernstein property, and show that $\\mbox{TFAG}$ fails the $\\alpha$-ary Schr\\\"{o}der-Bernstein property for every $\\alpha < \\kappa(\\omega)$. We leave open whether or not $\\mbox{TFAG}$ can have the $\\kappa(\\omega)$-ary Schr\\\"{o}der-Bernstein property; if it did, then it would not be $a \\Delta^1_2$-complete, and hence not Borel complete.", "revisions": [ { "version": "v1", "updated": "2018-04-22T18:32:39.000Z" } ], "analyses": { "subjects": [ "03C15", "03C55", "20K20" ], "keywords": [ "torsion-free abelian groups", "bernstein property", "leave open", "borel complete", "countable transitive model" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }