{ "id": "1804.07812", "version": "v1", "published": "2018-04-20T20:09:00.000Z", "updated": "2018-04-20T20:09:00.000Z", "title": "Broadcast Domination of Triangular Matchstick Graphs and the Triangular Lattice", "authors": [ "Pamela E. Harris", "Dalia K. Luque", "Claudia Reyes Flores", "Nohemi Sepulveda" ], "comment": "18 pages, 19 figures, 1 table", "categories": [ "math.CO" ], "abstract": "Blessing, Insko, Johnson and Mauretour gave a generalization of the domination number of a graph $G=(V,E)$ called the $(t,r)$ broadcast domination number which depends on the positive integer parameters $t$ and $r$. In this setting, a vertex $v \\in V$ is a broadcast vertex of transmission strength $t$ if it transmits a signal of strength $t-d(u,v)$ to every vertex $u \\in V$, where $d(u,v)$ denotes the distance between vertices $u$ and $v$ and $d(u,v)