{ "id": "1804.07560", "version": "v1", "published": "2018-04-20T11:44:14.000Z", "updated": "2018-04-20T11:44:14.000Z", "title": "Generalizations of some results about the regularity properties of an additive representation function", "authors": [ "Sándor Z. Kiss", "Csaba Sándor" ], "categories": [ "math.NT" ], "abstract": "Let $A = \\{a_{1},a_{2},\\dots{}\\}$ $(a_{1} < a_{2} < \\dots{})$ be an infinite sequence of nonnegative integers, and let $R_{A,2}(n)$ denote the number of solutions of $a_{x}+a_{y}=n$ $(a_{x},a_{y}\\in A)$. P. Erd\\H{o}s, A. S\\'ark\\\"ozy and V. T. S\\'os proved that if $\\lim_{N\\to\\infty}\\frac{B(A,N)}{\\sqrt{N}}=+\\infty$ then $|\\Delta_{1}(R_{A,2}(n))|$ cannot be bounded, where $B(A,N)$ denotes the number of blocks formed by consecutive integers in $A$ up to $N$ and $\\Delta_{l}$ denotes the $l$-th difference. Their result was extended to $\\Delta_{l}(R_{A,2}(n))$ for any fixed $l\\ge2$. In this paper we give further generalizations of this problem.", "revisions": [ { "version": "v1", "updated": "2018-04-20T11:44:14.000Z" } ], "analyses": { "keywords": [ "additive representation function", "regularity properties", "generalizations", "infinite sequence", "th difference" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }