{ "id": "1804.06608", "version": "v1", "published": "2018-04-18T09:00:22.000Z", "updated": "2018-04-18T09:00:22.000Z", "title": "Hausdorff dimensions of sets related to Erdös-Rényi average in beta expansions", "authors": [ "Haibo Chen" ], "comment": "24 pages", "categories": [ "math.NT" ], "abstract": "Let $\\beta>1$ and $\\phi$ be an integer function defined on $\\mathbb{N}\\setminus\\{0\\}$ satisfying $1\\leq\\phi(n)\\leq n$. Define the level set \\begin{align*} ER_\\phi^\\beta(\\alpha)=\\left\\{x\\in[0,1]\\colon A_\\phi(x,\\beta)=\\alpha\\right\\},\\quad \\alpha\\in I_\\beta, \\end{align*} where $A_\\phi(x,\\beta)$ is the Erd\\\"{o}s-R\\'{e}nyi digit average of $x\\in[0,1]$ associated with the function $\\phi$ in $\\beta$-expansion and $I_\\beta$ is the range of $\\alpha$. In this paper, we will determine the Hausdorff dimension of $ER_\\phi^\\beta(\\alpha)$ under the assumption $\\phi(n)\\to\\infty$ as $n\\to\\infty$ and $\\phi$ is the integer part of a slowly varying sequence. Besides, some generalizations in $\\beta$-expansion to the classic work \\cite{Be} of Besicovitch are also given.", "revisions": [ { "version": "v1", "updated": "2018-04-18T09:00:22.000Z" } ], "analyses": { "subjects": [ "11K55", "28A80" ], "keywords": [ "hausdorff dimension", "beta expansions", "erdös-rényi average", "digit average", "integer function" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }