{ "id": "1804.06567", "version": "v1", "published": "2018-04-18T06:26:35.000Z", "updated": "2018-04-18T06:26:35.000Z", "title": "The Erdös-Sós Conjecture for Spiders", "authors": [ "Genghua Fan", "Yanmei Hong", "Qinghai Liu" ], "comment": "23 pages", "categories": [ "math.CO" ], "abstract": "The Erd\\\"os-S\\'os conjecture states that if $G$ is a graph with average degree more than $k-1$, then G contains every tree of $k$ edges. A spider is a tree with at most one vertex of degree more than 2. In this paper, we prove that Erd\\\"os-S\\'os conjecture holds for all spiders.", "revisions": [ { "version": "v1", "updated": "2018-04-18T06:26:35.000Z" } ], "analyses": { "keywords": [ "erdös-sós conjecture", "conjecture holds", "average degree", "conjecture states" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }