{ "id": "1804.06444", "version": "v1", "published": "2018-04-17T19:27:38.000Z", "updated": "2018-04-17T19:27:38.000Z", "title": "The Fundamental Solution to the p-Laplacian in a class of Hörmander Vector Fields", "authors": [ "Thomas Bieske", "Robert D. Freeman" ], "comment": "9 pages", "categories": [ "math.AP", "math.DG", "math.MG", "math.OC" ], "abstract": "We find the fundamental solution to the p-Laplace equation in a class of H\\\"ormander vector fields that generate neither a Carnot group nor a Grushin-type space. The singularity occurs at the sub-Riemannian points which naturally corresponds to finding the fundamental solution of a generalized operator in Euclidean space. We then use this solution to find an infinite harmonic function with specific boundary data and to compute the capacity of annuli centered at the singularity.", "revisions": [ { "version": "v1", "updated": "2018-04-17T19:27:38.000Z" } ], "analyses": { "subjects": [ "35R03", "35A08", "35C05", "53C17", "31C45", "31E05" ], "keywords": [ "fundamental solution", "hörmander vector fields", "p-laplacian", "infinite harmonic function", "specific boundary data" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }