{ "id": "1804.05620", "version": "v1", "published": "2018-04-16T11:45:45.000Z", "updated": "2018-04-16T11:45:45.000Z", "title": "Instability of resonances under Stark perturbations", "authors": [ "Arne Jensen", "Kenji Yajima" ], "comment": "11 pages", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "Let $H^{\\varepsilon}=-\\frac{d^2}{dx^2}+\\varepsilon x +V$, $\\varepsilon\\geq0$, on $L^2(\\mathbf{R})$. Let $V=\\sum_{k=1}^Nc_k|\\psi_k\\rangle\\langle\\psi_k|$ be a rank $N$ operator, where the $\\psi_k\\in L^2(\\mathbf{R})$ are real, compactly supported, and even. Resonances are defined using analytic scattering theory. The main result is that if $\\zeta_n$, ${\\rm Im}\\zeta_n<0$, are resonances of $H^{\\varepsilon_n}$ for a sequence $\\varepsilon_n\\downarrow0$ as $n\\to\\infty$ and $\\zeta_n\\to\\zeta_0$ as $n\\to\\infty$, ${\\rm Im}\\zeta_0<0$, then $\\zeta_0$ is \\emph{not} a resonance of $H^0$.", "revisions": [ { "version": "v1", "updated": "2018-04-16T11:45:45.000Z" } ], "analyses": { "subjects": [ "81V10", "35J10", "35P05", "35P25" ], "keywords": [ "stark perturbations", "instability", "analytic scattering theory", "main result" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }