{ "id": "1804.05590", "version": "v1", "published": "2018-04-16T10:14:07.000Z", "updated": "2018-04-16T10:14:07.000Z", "title": "Multiplicity of solutions to an elliptic problem with singularity and measure data", "authors": [ "S. Ghosh", "A. Panda", "D. Choudhuri" ], "categories": [ "math.AP" ], "abstract": "In this paper we prove the existence of multiple nontrivial solutions of the following equation. \\begin{align*} \\begin{split} -\\Delta_{p}u & = \\frac{\\lambda}{u^{\\gamma}}+g(u)+\\mu\\,\\,\\mbox{in}\\,\\,\\Omega, u & = 0\\,\\, \\mbox{on}\\,\\, \\partial\\Omega, u&>0 \\,\\,\\mbox{in}\\,\\,\\Omega, \\end{split} \\end{align*} where $\\Omega \\subset \\mathbb{R}^N$ is a smooth bounded domain with $N \\geq 3$, $1 < p-1 < q$ , $ \\lambda>0$, $g$ satisfies certain conditions, $\\mu\\geq 0$ is a Radon measure.", "revisions": [ { "version": "v1", "updated": "2018-04-16T10:14:07.000Z" } ], "analyses": { "keywords": [ "elliptic problem", "measure data", "multiplicity", "singularity", "multiple nontrivial solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }