{ "id": "1804.05489", "version": "v1", "published": "2018-04-16T03:14:45.000Z", "updated": "2018-04-16T03:14:45.000Z", "title": "Remarks on scattering matrices for Schrödiner operators with critically long-range perturbations", "authors": [ "Shu Nakamura" ], "categories": [ "math-ph", "math.AP", "math.MP" ], "abstract": "We consider scattering matrix for Schr\\\"odinger-type operators on $R^d$ with perturbation $V(x)=O(\\langle x\\rangle^{-1})$ as $|x|\\to\\infty$. We show that the scattering matrix (with time-independent modifiers) is a pseudodifferential operator. We present examples of which the spectrum of the scattering matrix is dense point spectrum, or absolutely continuous spectrum, possibly with discrete point spectrum.", "revisions": [ { "version": "v1", "updated": "2018-04-16T03:14:45.000Z" } ], "analyses": { "subjects": [ "58J50", "35P25", "81U05" ], "keywords": [ "scattering matrix", "critically long-range perturbations", "schrödiner operators", "dense point spectrum", "discrete point spectrum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }