{ "id": "1804.05375", "version": "v1", "published": "2018-04-15T16:02:42.000Z", "updated": "2018-04-15T16:02:42.000Z", "title": "Commutator Subgroups of Twin Groups and Grothendieck's Cartographical groups", "authors": [ "Soumya Dey", "Krishnendu Gongopadhyay" ], "comment": "15 pages, 1 figure, comments are most welcome", "categories": [ "math.GT", "math.GR" ], "abstract": "Let $TW_n$ be the twin group on $n$ arcs. The group $TW_{n+2}$ is isomorphic to Grothendieck's $n$-dimensional cartographical group $\\mathcal C_n$, $n \\geq 1$. In this paper we give a finite presentation of the commutator subgroup $TW_{n+2}'$. We further prove that the commutator subgroup $TW_{n+2}'$ has rank $2n-1$, $n \\geq 1$. As corollaries, we derive that $TW_{n+2}'$ is free if and only if $n \\leq 3$. From this it follows that the automorphism group of $TW_{n+2}$ is finitely presented for $n \\leq 3$.", "revisions": [ { "version": "v1", "updated": "2018-04-15T16:02:42.000Z" } ], "analyses": { "subjects": [ "20F36", "20F12", "20F05", "11G32", "05E15" ], "keywords": [ "commutator subgroup", "grothendiecks cartographical groups", "twin group", "automorphism group", "dimensional cartographical group" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }