{ "id": "1804.04693", "version": "v1", "published": "2018-04-12T19:05:18.000Z", "updated": "2018-04-12T19:05:18.000Z", "title": "On the largest Kronecker and Littlewood--Richardson coefficients", "authors": [ "Igor Pak", "Greta Panova", "Damir Yeliussizov" ], "comment": "25 pages", "categories": [ "math.CO", "math.RT" ], "abstract": "We give new bounds and asymptotic estimates for Kronecker and Littlewood--Richardson coefficients. Notably, we resolve Stanley's questions on the shape of partitions attaining the largest Kronecker and Littlewood--Richardson coefficients. We apply the results to asymptotics of the number of standard Young tableaux of skew shapes.", "revisions": [ { "version": "v1", "updated": "2018-04-12T19:05:18.000Z" } ], "analyses": { "keywords": [ "littlewood-richardson coefficients", "largest kronecker", "standard young tableaux", "resolve stanleys questions", "asymptotic estimates" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }