{ "id": "1804.04287", "version": "v1", "published": "2018-04-12T02:21:17.000Z", "updated": "2018-04-12T02:21:17.000Z", "title": "Exact behavior around isolated singularity for semilinear elliptic equations with a log-type nonlinearity", "authors": [ "Marius Ghergu", "Sunghan Kim", "Henrik Shahgholian" ], "comment": "to appear in Adv. Nonlinear Anal", "categories": [ "math.AP" ], "abstract": "We study the semilinear elliptic equation \\begin{equation*} -\\Delta u=u^\\alpha |\\log u|^\\beta\\quad\\text{in }B_1\\setminus\\{0\\}, \\end{equation*} where $B_1\\subset\\mathbb{R}^n$ with $n\\geq 3$, $\\frac{n}{n-2} < \\alpha < \\frac{n+2}{n-2}$ and $-\\infty<\\beta<\\infty$. Our main result establishes that nonnegative solution $u\\in C^2(B_1\\setminus\\{0\\})$ of the above equation either has a removable singularity at the origin or behaves like \\begin{equation*} u(x) = A(1+o(1)) |x|^{-\\frac{2}{\\alpha-1}} \\left(\\log \\frac{1}{|x|}\\right)^{-\\frac{\\beta}{\\alpha-1}}\\quad\\text{as } x\\rightarrow 0, \\end{equation*} with \\begin{equation*} A=\\left[\\left(\\frac{2}{\\alpha-1}\\right)^{1-\\beta}\\left(n-2-\\frac{2}{\\alpha-1}\\right)\\right]^{\\frac{1}{\\alpha-1}}. \\end{equation*}", "revisions": [ { "version": "v1", "updated": "2018-04-12T02:21:17.000Z" } ], "analyses": { "keywords": [ "semilinear elliptic equation", "exact behavior", "log-type nonlinearity", "isolated singularity", "main result establishes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }