{ "id": "1804.02879", "version": "v1", "published": "2018-04-09T09:25:45.000Z", "updated": "2018-04-09T09:25:45.000Z", "title": "On the continuity of the Hausdorff dimension of the univoque set", "authors": [ "Pieter Allaart", "Derong Kong" ], "comment": "18 pages", "doi": "10.1016/j.aim.2019.106729", "categories": [ "math.DS" ], "abstract": "In a recent paper [Adv. Math. 305:165--196, 2017], Komornik et al.~proved a long-conjectured formula for the Hausdorff dimension of the set $\\mathcal{U}_q$ of numbers having a unique expansion in the (non-integer) base $q$, and showed that this Hausdorff dimension is continuous in $q$. Unfortunately, their proof contained a gap which appears difficult to fix. This article gives a completely different proof of these results, using a more direct combinatorial approach.", "revisions": [ { "version": "v1", "updated": "2018-04-09T09:25:45.000Z" } ], "analyses": { "subjects": [ "11A63", "37B10", "28A78" ], "keywords": [ "hausdorff dimension", "univoque set", "continuity", "direct combinatorial approach", "unique expansion" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }