{ "id": "1804.01800", "version": "v2", "published": "2018-04-05T12:15:36.000Z", "updated": "2018-09-13T11:46:06.000Z", "title": "On geometry of the ring of algebraic integers", "authors": [ "Igor Nikolaev" ], "comment": "8 pages, 1 figure; an update", "categories": [ "math.NT", "math.AG", "math.OA" ], "abstract": "We study geometry of the ring of algebraic integers $O_K$ of a number field $K$. Namely, it is proved that the inclusion $\\mathbf{Z}\\subset O_K$ defines a covering of the Riemann sphere $\\mathbf{C}P^1$ ramified over three points $\\{0,1,\\infty\\}$. Our approach is based on the notion of a Serre $C^*$-algebra. As an application, a new short proof of the Belyi Theorem is given.", "revisions": [ { "version": "v2", "updated": "2018-09-13T11:46:06.000Z" } ], "analyses": { "subjects": [ "11R04", "14H55", "46L85" ], "keywords": [ "algebraic integers", "belyi theorem", "study geometry", "short proof", "number field" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }