{ "id": "1804.01372", "version": "v1", "published": "2018-04-04T12:43:31.000Z", "updated": "2018-04-04T12:43:31.000Z", "title": "Subsymmetric weak$^*$ Schauder bases and factorization of the identity", "authors": [ "Richard Lechner" ], "comment": "16 pages, 1 figure", "doi": "10.4064/sm180404-29-9", "categories": [ "math.FA" ], "abstract": "Let $X^*$ denote a Banach space with a subsymmetric weak$^*$ Schauder basis satisfying condition~\\eqref{eq:condition-c}. We show that for any operator $T : X^*\\to X^*$, either $T(X^*)$ or $(I-T)(X^*)$ contains a subspace that is isomorphic to $X^*$ and complemented in $X^*$. Moreover, we prove that $\\ell^p(X^*)$, $1\\leq p \\leq \\infty$ is primary.", "revisions": [ { "version": "v1", "updated": "2018-04-04T12:43:31.000Z" } ], "analyses": { "subjects": [ "46B25", "46B26" ], "keywords": [ "subsymmetric weak", "factorization", "banach space", "schauder basis satisfying" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }