{ "id": "1804.00321", "version": "v1", "published": "2018-04-01T17:27:24.000Z", "updated": "2018-04-01T17:27:24.000Z", "title": "A magic rectangle set on Abelian groups", "authors": [ "Sylwia Cichacz", "Tomasz Hinc" ], "journal": "Discrete Applied Mathematics 288 (2021) 201-210", "doi": "10.1016/j.dam.2020.08.029", "categories": [ "math.NT", "math.CO" ], "abstract": "A $\\Gamma$-magic rectangle set $MRS_{\\Gamma}(a, b; c)$ of order $abc$ is a collection of $c$ arrays $(a\\times b)$ whose entries are elements of group $\\Gamma$, each appearing once, with all row sums in every rectangle equal to a constant $\\omega\\in \\Gamma$ and all column sums in every rectangle equal to a constant $\\delta \\in \\Gamma$. In this paper we prove that for $\\{a,b\\}\\neq\\{2^{\\alpha},2k+1\\}$ where $\\alpha$ and $k$ are some natural numbers, a $\\Gamma$-magic rectangle set MRS$_{\\Gamma}(a, b;c)$ exists if and only if $a$ and $b$ are both even or and $|\\Gamma|$ is odd or $\\Gamma$ has more than one involution. Moreover we obtain sufficient and necessary conditions for existence a $\\Gamma$-magic rectangle MRS$_{\\Gamma}(a, b)$=MRS$_{\\Gamma}(a, b;1)$.", "revisions": [ { "version": "v1", "updated": "2018-04-01T17:27:24.000Z" } ], "analyses": { "keywords": [ "abelian groups", "magic rectangle set mrs", "rectangle equal", "magic rectangle mrs", "row sums" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }