{ "id": "1804.00018", "version": "v2", "published": "2018-03-30T18:11:49.000Z", "updated": "2019-01-14T20:55:52.000Z", "title": "Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions", "authors": [ "S. Brendle", "K. Choi" ], "comment": "In this paper, we extend the result in arxiv:1711.00823 to higher dimensions, assuming uniform two-convexity", "categories": [ "math.DG" ], "abstract": "In this paper, we consider noncompact ancient solutions to the mean curvature flow in $\\mathbb{R}^{n+1}$ ($n \\geq 3$) which are strictly convex, uniformly two-convex, and noncollapsed. We prove that such an ancient solution is a rotationally symmetric translating soliton.", "revisions": [ { "version": "v2", "updated": "2019-01-14T20:55:52.000Z" } ], "analyses": { "keywords": [ "mean curvature flow", "convex ancient solutions", "higher dimensions", "uniqueness", "noncompact ancient solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }