{ "id": "1803.10087", "version": "v2", "published": "2018-03-27T14:04:56.000Z", "updated": "2020-11-20T15:21:30.000Z", "title": "$\\aleph_0$-categoricity of semigroups II", "authors": [ "T. Quinn-Gregson" ], "categories": [ "math.LO", "math.RA" ], "abstract": "A countable semigroup is $\\aleph_0$-categorical if it can be characterised, up to isomorphism, by its first-order properties. In this paper we continue our investigation into the $\\aleph_0$-categoricity of semigroups. Our main results are a complete classification of $\\aleph_0$-categorical orthodox completely 0-simple semigroups, and descriptions of the $\\aleph_0$-categorical members of certain classes of strong semilattices of semigroups.", "revisions": [ { "version": "v2", "updated": "2020-11-20T15:21:30.000Z" } ], "analyses": { "keywords": [ "categoricity", "first-order properties", "main results", "complete classification", "strong semilattices" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }