{ "id": "1803.10015", "version": "v2", "published": "2018-03-27T11:05:47.000Z", "updated": "2018-04-11T13:40:37.000Z", "title": "On gradient estimates for the heat kernel", "authors": [ "Baptiste Devyver" ], "comment": "62 pages, more detailed introduction", "categories": [ "math.AP", "math.DG" ], "abstract": "We study pointwise and $L^p$ gradient estimates of the heat kernel, on manifolds that may have some amount of negative Ricci curvature, provided it is not too negative (in an integral sense) at infinity. We also prove uniform boundedness results on $L^p$ spaces for the heat operator of the Hodge Laplacian on differential forms.", "revisions": [ { "version": "v2", "updated": "2018-04-11T13:40:37.000Z" } ], "analyses": { "subjects": [ "35K08", "58J35" ], "keywords": [ "heat kernel", "gradient estimates", "uniform boundedness results", "differential forms", "negative ricci curvature" ], "note": { "typesetting": "TeX", "pages": 62, "language": "en", "license": "arXiv", "status": "editable" } } }