{ "id": "1803.09562", "version": "v1", "published": "2018-03-26T13:03:28.000Z", "updated": "2018-03-26T13:03:28.000Z", "title": "On maximum and comparison principles for parabolic problems with the $p$-Laplacian", "authors": [ "Vladimir Bobkov", "Peter Takac" ], "comment": "16 pages", "doi": "10.1007/s13398-018-0536-6", "categories": [ "math.AP" ], "abstract": "We investigate strong and weak versions of maximum and comparison principles for a class of quasilinear parabolic equations with the $p$-Laplacian $$ \\partial_t u - \\Delta_p u = \\lambda |u|^{p-2} u + f(x,t) $$ under zero boundary and nonnegative initial conditions on a bounded cylindrical domain $\\Omega \\times (0, T)$, $\\lambda \\in \\mathbb{R}$, and $f \\in L^\\infty(\\Omega \\times (0, T))$. Several related counterexamples are given.", "revisions": [ { "version": "v1", "updated": "2018-03-26T13:03:28.000Z" } ], "analyses": { "subjects": [ "35B50", "35B51", "35B30", "35K92" ], "keywords": [ "comparison principles", "parabolic problems", "quasilinear parabolic equations", "zero boundary", "weak versions" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }