{ "id": "1803.09246", "version": "v2", "published": "2018-03-25T12:58:24.000Z", "updated": "2018-11-19T12:39:16.000Z", "title": "Ground states of the $L^2$-critical NLS equation with localized nonlinearity on a tadpole graph", "authors": [ "Simone Dovetta", "Lorenzo Tentarelli" ], "comment": "12 pages, 5 figures. Keywords: minimization, metric graphs, critical growth, nonlinear Schr\\\"odinger equation, localized nonlinearity", "journal": "Oper. Theory Adv. Appl. 281 (2020), 113-125", "doi": "10.1007/978-3-030-44097-8_5", "categories": [ "math.AP" ], "abstract": "The paper aims at giving a first insight on the existence/nonexistence of ground states for the $L^2$-critical NLS equation on metric graphs with localized nonlinearity. In particular, we focus on the tadpole graph, which, albeit being a toy model, allows to point out some specific features of the problem, whose understanding will be useful for future investigations.", "revisions": [ { "version": "v2", "updated": "2018-11-19T12:39:16.000Z" } ], "analyses": { "subjects": [ "35R02", "35Q55", "81Q35", "49J40" ], "keywords": [ "critical nls equation", "ground states", "tadpole graph", "localized nonlinearity", "paper aims" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }