{ "id": "1803.08824", "version": "v3", "published": "2018-03-23T14:58:07.000Z", "updated": "2019-07-09T13:00:11.000Z", "title": "The kernel of chromatic quasisymmetric functions on graphs and hypergraphic polytopes", "authors": [ "Raul Penaguiao" ], "comment": "40 pages, 4 figures, this is the longer version", "categories": [ "math.CO", "math.RA" ], "abstract": "We study the chromatic symmetric function on graphs, and show that its kernel is spanned by the modular relations. We generalize this result to the chromatic quasisymmetric function on hypergraphic polytopes, a family of generalized permutahedra. We use this description of the kernel of the chromatic symmetric function to find other graph invariants that may help us tackle the tree conjecture.", "revisions": [ { "version": "v3", "updated": "2019-07-09T13:00:11.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "chromatic quasisymmetric function", "hypergraphic polytopes", "chromatic symmetric function", "modular relations", "graph invariants" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }