{ "id": "1803.07852", "version": "v1", "published": "2018-03-21T10:58:02.000Z", "updated": "2018-03-21T10:58:02.000Z", "title": "A note on the optimal boundary regularity for the planar generalized $p$-Poisson equation", "authors": [ "Saikatul Haque" ], "comment": "21 pages", "categories": [ "math.AP" ], "abstract": "In this note, we establish sharp regularity for solutions to the following generalized $p$- Poisson equation $$-\\ div\\ \\big(\\langle A\\nabla u,\\nabla u\\rangle^{\\frac{p-2}{2}}A\\nabla u\\big)=-\\ div\\ \\mathbf{h}+f.$$ in the plane (i.e. in $\\mathbb{R}^n=\\mathbb{R}^2$) for $p>2$ in the presence of Dirichlet as well as Neumann boundary conditions and with $\\mathbf{h}\\in C^{1-n/q}$, $f\\in L^q$, $2=n