{ "id": "1803.07633", "version": "v1", "published": "2018-03-20T20:07:07.000Z", "updated": "2018-03-20T20:07:07.000Z", "title": "The Menger and projective Menger properties of function spaces with the set-open topology", "authors": [ "Alexander V. Osipov" ], "comment": "11 pages", "categories": [ "math.GN" ], "abstract": "For a Tychonoff space $X$ and a family $\\lambda$ of subsets of $X$, we denote by $C_{\\lambda}(X)$ the space of all real-valued continuous functions on $X$ with the set-open topology. In this paper, we study the Menger and projective Menger properties of a Hausdorff space $C_{\\lambda}(X)$. Our main results state that if $\\lambda$ is a $\\pi$-network of $X$ then (1) $C_{\\lambda}(X)$ is Menger space if and only if it is $\\sigma$-compact, if $\\lambda$ is a $\\pi$-network of finite subsets of $X$ then (2) $C_{\\lambda}(X)$ is projective Menger space if and only if it is $\\sigma$-pseudocompact.", "revisions": [ { "version": "v1", "updated": "2018-03-20T20:07:07.000Z" } ], "analyses": { "keywords": [ "projective menger properties", "set-open topology", "function spaces", "main results state", "projective menger space" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }