{ "id": "1803.07234", "version": "v1", "published": "2018-03-20T03:18:12.000Z", "updated": "2018-03-20T03:18:12.000Z", "title": "Remarks on formal languages and the model theory of monoids", "authors": [ "Christopher D. C. Hawthorne" ], "categories": [ "math.LO" ], "abstract": "Given a monoid $(M,\\cdot ,\\epsilon )$ that is freely generated on a finite set $\\Sigma $, it is shown that the quantifier-free definable subsets of $M$ form a proper subclass of the star-free languages over $\\Sigma $. Furthermore, a subset $A\\subseteq M$ is shown to be a regular language over $\\Sigma $ if and only if the $\\phi $-rank of $x=x$ is zero, where $\\phi (x; v)$ is the formula $xv\\in A$. This latter result is extended to arbitrary monoids with recognizable subsets replacing regular languages.", "revisions": [ { "version": "v1", "updated": "2018-03-20T03:18:12.000Z" } ], "analyses": { "subjects": [ "03C65", "68Q45", "68Q70", "F.4.1", "F.4.3" ], "keywords": [ "formal languages", "model theory", "recognizable subsets replacing regular languages", "star-free languages", "proper subclass" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }