{ "id": "1803.06953", "version": "v1", "published": "2018-03-19T14:35:55.000Z", "updated": "2018-03-19T14:35:55.000Z", "title": "Entropy solutions for stochastic porous media equations", "authors": [ "Konstantinos Dareiotis", "Maté Gerencsér", "Benjamin Gess" ], "comment": "25 pages", "categories": [ "math.PR", "math.AP" ], "abstract": "We provide an entropy formulation for porous medium-type equations with a stochastic, non-linear, spatially inhomogeneous forcing. Well - posedness and $L_1$-contraction is obtained in the class of entropy solutions. Our scope allows for porous medium operators $\\Delta (|u|^{m-1}u)$ for all $m\\in(1,\\infty)$, and H\\\"older continuous diffusion nonlinearity with exponent $1/2$.", "revisions": [ { "version": "v1", "updated": "2018-03-19T14:35:55.000Z" } ], "analyses": { "subjects": [ "60H15", "35K65", "35K59" ], "keywords": [ "stochastic porous media equations", "entropy solutions", "continuous diffusion nonlinearity", "porous medium-type equations", "entropy formulation" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }