{ "id": "1803.06901", "version": "v1", "published": "2018-03-19T13:14:43.000Z", "updated": "2018-03-19T13:14:43.000Z", "title": "Cyclic Sieving and Cluster Duality for Grassmannian", "authors": [ "Linhui Shen", "Daping Weng" ], "comment": "40 pages", "categories": [ "math.RT", "math-ph", "math.AG", "math.CO", "math.MP" ], "abstract": "We introduce a decorated configuration space $\\mathscr{C}onf_n^\\times(a)$ with a potential function $\\mathcal{W}$. We prove the cluster duality conjecture of Fock-Goncharov for Grassmannians, that is, the tropicalization of $(\\mathscr{C}onf_n^\\times(a), \\mathcal{W})$ canonically parametrizes a linear basis of the homogenous coordinate ring of the Grassmannian ${\\rm Gr}_a(n)$. We prove that $(\\mathscr{C}onf_n^\\times(a), \\mathcal{W})$ is equivalent to the mirror Landau-Ginzburg model of Grassmannian considered by Marsh-Rietsch and Rietsch-Williams. As an application, we show a cyclic sieving phenomenon involving plane partitions under a sequence of piecewise-linear toggles.", "revisions": [ { "version": "v1", "updated": "2018-03-19T13:14:43.000Z" } ], "analyses": { "keywords": [ "grassmannian", "mirror landau-ginzburg model", "cluster duality conjecture", "plane partitions", "cyclic sieving phenomenon" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }