{ "id": "1803.06757", "version": "v1", "published": "2018-03-18T22:12:51.000Z", "updated": "2018-03-18T22:12:51.000Z", "title": "On stabilization of solutions of higher order evolution inequalities", "authors": [ "A. A. Kon'kov", "A. E. Shishkov" ], "categories": [ "math.AP" ], "abstract": "We obtain sharp conditions guaranteeing that every non-negative weak solution of the inequality $$ \\sum_{|\\alpha| = m} \\partial^\\alpha a_\\alpha (x, t, u) - u_t \\ge f (x, t) g (u) \\quad \\mbox{in} {\\mathbb R}_+^{n+1} = {\\mathbb R}^n \\times (0, \\infty), \\quad m,n \\ge 1, $$ stabilizes to zero as $t \\to \\infty$. These conditions generalize the well-known Keller-Osserman condition on the grows of the function $g$ at infinity.", "revisions": [ { "version": "v1", "updated": "2018-03-18T22:12:51.000Z" } ], "analyses": { "subjects": [ "35K25", "35K55", "35K65", "35B09", "35B40" ], "keywords": [ "inequality", "higher order evolution inequalities", "stabilization", "well-known keller-osserman condition", "non-negative weak solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }